
MICROPYTHON FOR ZING

About MIcropython
MicroPython implements the entire Python 3.4 syntax (including exceptions, with, yield from,
etc., and additionally async/await keywords from Python 3.5 and some select features from
later versions). The following core datatypes are provided: str(including basic Unicode
support), bytes, bytearray, tuple, list, dict, set, frozenset, array.array, collections.namedtuple,
classes and instances. Builtin modules include os, sys, time, re, and struct, etc. Select ports
have support for _thread module (multithreading), socket and ssl for networking, and
asyncio. Note that only a subset of Python 3 functionality is implemented for the data types
and modules.

MicroPython can execute scripts in textual source form (.py files) or from precompiled
bytecode (.mpy files), in both cases either from an on-device filesystem or "frozen" into the
MicroPython executable.

MicroPython also provides a set of MicroPython-specific modules to access
hardware-specific functionality and peripherals such as GPIO, Timers, ADC, DAC, PWM,
SPI, I2C, CAN, Bluetooth, and USB.

Detailed information regarding MICROPYTHON can be found here.

ZING CUSTOM FIRMWARE

Along with all the functionality of the micropython we have created a custom port for our zing
board. We used the GENERIC 32 build structure to compile our own custom firmware. The
nice part of our custom firmware is that we have compiled a library which includes all the
internal ports and I/O sensors which can be controlled directly without knowing the GPIO
number by calling the specific function.

ZING LIBRARY
Zing library has all the internal I/O sensors and ports are included in the library which can be
called directly from the library. Overall syntax of common zings accessories are kept the
same through various versions for forward compatibility meaning if you wrote a program for
one particular version you can use the same program for all the other versions of zing.

https://docs.micropython.org/en/latest/


ZING V1.0 SYNTAX
INTERNAL PORT NUMBERS VARIABLES

SL NO PORT SYNTAX GPIO

1. A1 PORT_A1 1

2 A2 PORT_A2 2

3 B1 PORT_B1 4

4 B2 PORT_B2 5

5 C1 PORT_C1 6

6 C2 PORT_C2 7

7 D1 PORT_D1 8

8 D2 PORT_D2 9

Each intel gpio pin can be referenced by calling the corresponding syntax. The bellow
examples shows how to control the GPIO on different ports using micropython

EXAMPLES

Controlling GPIO on the specific PORT.
import zing

from machine import pin

from time import sleep

PA1 = Pin(zing.PORT_A1 Pin.OUT)

while True:

PA1.value(1)

sleep(1)

PA1.value(0)

sleep(1)

Example 1.0.1 : Controlling the GPIO of A1 port.
This example shows How to create an LED blinking program using the A1 port.



Reading from a specific GPIO PORT.
import zing

from machine import pin

from time import sleep

PA1 = Pin(zing.PORT_A1 Pin.IN)

while True:

print(PA1.value())

sleep(1)

Example 1.0.2 : Reading value from GPIO of A1 port.

The above example shows how to read values from a specific GPIO and print the value to
the console. pin object is used to control I/O pins (also known as GPIO - general-purpose
input/output). Pin objects are commonly associated with a physical pin that can drive an
output voltage and read input voltages. The pin class has methods to set the mode of the pin
(IN, OUT, etc) and methods to get and set the digital logic level. A pin object is constructed
by using an identifier which unambiguously specifies a certain I/O pin. The allowed forms of
the identifier and the physical pin that the identifier maps to are port-specific. Possibilities for
the identifier are an integer, a string or a tuple with port and pin number.

ADC Read.
import zing

from machine import ADC, Pin

from time import sleep

PA1 = ADC(Pin(zing.PORT_A1))

while True:

print(PA1.read())

sleep(1)

Example 1.0.3 : Reading the ADC value.
The above example shows how to read ADC value from a specific GPIO and print the value
to the console.



Controlling the inbuilt RGB LEDS.
from zing import rgb_led

led = rgb_led()

led.set_pixels(1,255,0,0)

led.update_pixels()

Example 1.0.4 : Controlling the internal RGB LEDS.
The above example shows how to control the internal RGB LEDS of the zing.

Reading the internal battery percentage.
from zing import battery

bat = battery()

while True:

val = bat.get_level()

print(val)

Example 1.0.14 : reading the battery percentage.
The above example shows how to read inbuilt battery percentage and print on the console.

Reading the inbuilt ACCELEROMETER and GYRO.
from zing import IMU

imu = IMU()

while True:

acc = imu.get_acc()

gyro = imu.get_acc()

print(f"ACC_X={acc[0]}")

print(f"ACC_Y={acc[1]}")

print(f"ACC_Z={acc[2]}")

print(f"GYRO_X={gyro[0]}")

print(f"GYRO_Y={gyro[1]}")

print(f"GYRO_Z={gyro[2]}")

Example 1.0.15 : reading the 3-axis acceleration.
The above example shows how to read the inbuilt accelerometer and print on the console.



Controlling the Serial servo.
from zing import SerialServo

servo = SerialServo()

while True:

id = 1

servo.set_id(id) #setting the ID

servo.angle_adjust(id,100) #setting the angle

servo.move_time(id,100,1) #setting the angle in 1ms

angle = servo.read_pos(id)

print(angle)

Example 1.0.16 : Controlling the serial servo motor of zing
The above example shows how to read, write, set angle to zing.

Setting up an OLED screen.
from zing import OLED

oled=OLED()

while True:

oled.set_text("Free the MALLOCS !!!!", 1)

oled.show()

Example 1.0.16 : Setting up an OLED interface.



Controlling the RGB ultrasonic sensor.
from zing import RGB_Ultrasonic

us = RGB_Ultrasonic()

while True:

id = 1

dis = us.distance_cm() #reading the distance in cm

print(dis)

us.rgb_set_color(255,0,0) #seting the rgbof ultrasonic

Example 1.0.16 : Setting up a RGB ULTRASONIC sensor.


